Math Virtual Learning

Grade 8

Geometric Transformations: Reflections

April 16, 2020

Math 8
 Lesson: April 16, 2020

Objective/Learning Target:

I can describe the effect of reflections of two-dimensional figures using coordinates.

Warm Up

Reflections are everywhere ... in mirrors, glass, and here in a lake.
... what do you notice?

Every point is the same distance from the central line!
... and ...

The reflection has the same size as the original image
Can you come up with a real-world example? Where have you seen reflections in your life? Can you find one right now around you?

Warm Up continued

Some more real life examples of translations are:

- the symmetry of your face
- the wings of a butterfly
- an airplane
- flipping images on computers

Define: Reflection

Reflections are mirror images. Think of "folding" the graph over the \mathbf{x}-axis or y -axis.

Reflection Across the X-Axis
For every coordinate pair (x, y) of the pre-image, the new coordinates of the image can be found by using the formula: $\quad(x, y) \rightarrow(x,-y)$

Reflection Across the Y-Axis
For every coordinate pair (x, y) of the pre-image, the new coordinates of the image can be found by using the formula: $\quad(x, y) \rightarrow(-x, y)$

Reflection over the $y=2 x i s$

$$
(x, y) \rightarrow(-x, y)
$$

()

Reflection Over the $x=$ axis

$$
(x, y) \rightarrow(x,-y)
$$

$$
-\frac{0}{2}-
$$

Video: Reflections

Watch this video on how to do reflections.
Take notes on your own piece of paper.

Example 1: Find the coordinates of the point $(3,-5)$ after a reflection across the y-axis.

Think about it....

- If we are reflecting across the y-axis, the x-value changes!
$(3,-5)$ Original Point
$(-3,-5) \quad$ The opposite value for x
$=(-3,5) \longleftarrow$ New Point

Try these: On a separate sheet of paper, find the coordinates of each point after a reflection across the y-axis. Answers on the next page.
A. $(0,5)$
B. $(-2,-3)$
C. $(4,-1)$

Solution:

Find the coordinates of each point after a reflection across the y-axis. (Notice this would be the opposite x value.)
A. $(0,5)$
B. $(-2,-3)$
C. $(4,-1)$

$(0,5) \quad$ Original point
$(-0,5)$
The opposite of 0 is 0.
$=(0,5)$ Solution

$(-2,-3)$	Original point
$(--2,-3)$	
$=(2,-3)$	Solution

$(4,-1) \quad$ Original point
$(--4,-1)$
$=(4,-1)$

Example 2: Find the coordinates of the point $(3,-5)$ after a reflection across the x-axis.

Think about it....

- If we are reflecting across the x-axis, the y-value changes!
$(3,-5)$ Original Point
(3, - -5) The opposite value for y
$=(3,5) \longleftarrow$ New Point

Try these: On a separate sheet of paper, find the coordinates of each point after a reflection across the x-axis. Answers on the next page.
A. $(-4,2)$
B. $(3,0)$
C. $(7,-6)$

Solution:

Find the coordinates of each point after a reflection across the x-axis. (Notice this would be the opposite y value.)
A. $(-4,2)$
B. $(3,0)$
C. $(7,-6)$

$(-4,2)$	Original point
$(3,-2)$	
$=(-4,-2)$	Solution

$(3,0)$	Original point
$(3,-0)$	
The opposite of 0 is 0.	
$=(3,0)$	Solution

$(7,-6) \quad$ Original point
$(7,--6)$
$=(7,6)$

Example 3: Find the coordinates of the Figure $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$ after a reflection across the y-axis, given $F(2,3), G(-3,6), H(1,-1)$.

Think about it....

- If we are reflecting across the y-axis, the x-value changes!

$F(2,3)$	$G(-3,6)$	$H(1,-1)$	\longleftrightarrow Original Points
$F(-2,3)$	$G(--3,6)$	$H(-1,-1)$.	The opposite value for x
$=F(-2,3)$,	$G(3,6)$,	$H(-1,-1)$.	New Points

Try these: On a separate sheet of paper, find the coordinates of each Figure after a reflection across the y-axis. Answers on the next page.
$A(-3,1), B(0,0), C(5,-3)$

$$
L(7,-6), M(0,4), N(-2,-2), O(-8,2)
$$

Solution:

Find the coordinates of each Figure after a reflection across the y-axis. Answers on the next page. (Notice this would be the opposite x value.)
$A(-3,1), B(0,0), C(5,-3) \quad L(7,-6), M(0,4), N(-2,-2), O(-8,2)$
$A(-3,1), B(0,0), C(5,-3) \quad$ Pre-image
$(--3,1), \quad(-0,0), \quad(-5,-3)$
Special Case!
$=A^{\prime}(3,1), B^{\prime}(0,0), C^{\prime}(-5,-3)$
Solution
$L(7,-6), M(0,4), N(-2,-2), O(-8,2) \quad$ Pre-image
$(-7,-6),(-0,4),(--2,-2),(--8,2)$
Special Case!
$=L^{\prime}(-7,-6), M^{\prime}(0,4), N^{\prime}(2,-2), O^{\prime}(8,2)$ Solution

Example 3: Identify the transformation if the pre-image points are $G(-3,-6), H(1,2)$ and the image points are $G^{\prime}(3,-6)$, $H^{\prime}(-1,2)$.

Think about it....

- If we are reflecting across the x-axis, the y-value changes!
- If we are reflecting across the y-axis, the x-value changes!

Original Points
$G(-3,-6), H(1,2)$

New Points
$\mathbf{G}^{\prime}(3,-6), H^{\prime}(-1,2)$

The x-values have changed to opposite values, so we know this is a Reflection across the y-axis!

Try these: On a separate sheet of paper, find the transformation, given the pre-image and image points. Answers on the next page.

- $A(8,6), B(-5,3) \quad \& \quad A^{\prime}(-8,6), B^{\prime}(5,3)$
- $R(7,-2), S(0,0), T(-1,1)$
$R^{\prime}(7,2), S^{\prime}(0,0), T^{\prime}(-1,-1)$

Solution:

Find the transformation, given the pre-image and image points.

- $A(8,6), B(-5,3) \quad \& \quad A^{\prime}(-8,6), B^{\prime}(5,-3)$
- $R(7,-2), S(0,0), T(-1,1)$
\&
$R^{\prime}(7,2), S^{\prime}(0,0), T^{\prime}(-1,-1)$

$A(8,6), B(-5,3)$
$A^{\prime}(-8,6), B^{\prime}(5,-3)$
The x-values are opposites...
$=$ Reflection Across the Y-Axis

$$
\begin{aligned}
& \left.R(7,-2), S(0,0), T^{(-1,1}\right) \\
& R^{\prime}(7,2), S^{\prime}(0,0), T^{\prime}(-1,-1)
\end{aligned}
$$

The y-values are opposites...
Except for $(0,0)$. The opposite of 0 is 0.

Special Case!
$=$ Reflection Across the X-Axis

Practice 1: Complete the table below using the

 transformation rules. Answer Key provided on the next page| Original Point | Reflection of point over
 the x-axis | Reflection of point over
 the y-axis. |
| :---: | :--- | :--- |
| $(4,8)$ | $(4,-8)$ | $(-4,8)$ |
| $(3,2)$ | | |
| $(-5,7)$ | | |
| $(-2,-1)$ | | |
| $(6,0)$ | | |
| $(0,-9)$ | | |

Remember...
Reflection over the x-axis
$(x, y) \longrightarrow(x,-y)$

Remember...
Reflection over the y-axis
$(x, y) \longrightarrow(-x, y)$

Practice 1: Answer Key

Original Point	Reflection of point over the x-axis	Reflection of point over the y-axis.
$(4,8)$	$(4,-8)$	$(-4,8)$
$(3,2)$	$(3,-2)$	$(-3,2)$
$(-5,7)$	$(-5,-7)$	$(5,7)$
$(-2,-1)$	$(-2,1)$	$(2,-1)$
$(6,0)$	$(6,0)$	$(6,0)$
$(0,-9)$	$(0,9)$	$(0,-9)$

Practice 2:

Find the coordinates of the vertices of each figure after the given transformation.

1) reflection across the x-axis

$$
F(4,2), E(4,3), D(5,2)
$$

2) reflection across the y-axis $Q(-3,2), R(-3,4), S(-1,5)$
3) Triangle RST is reflected over the x-axis. The vertices are: $R(4,2), S(2,3)$ and $T(0,0)$. Which set of ordered pairs represents the vertices of $R^{\prime} S^{\prime} T^{\prime}$?
A. $R^{\prime \prime}(-4,2) S^{\prime}(-2,3), S^{\prime}(0,0)$
B. $R^{\prime}(4,-2) S^{\prime}(-2,3), S^{\prime}(0,0)$
C. $R^{\prime}(4,-2) S^{\prime}(2,-3) S^{\prime}(0,0)$

Write a rule to describe each transformation.
4) $D(-4,1), C(-5,4), B(-3,5), A(-2,0)$
to
$C^{\prime}(-5,-4), B^{\prime}(-3,-5), A^{\prime}(-2,0), D^{\prime}(-4,-1)$
5) $J(-5,-4), I(-5,-1), H(-4,0), G(-1,-4)$
to $I^{\prime}(5,-1), H^{\prime}(4,0), G^{\prime}(1,-4), J^{\prime}(5,-4)$

Practice 2: Answer Key

Find the coordinates of the vertices of each figure after the given transformation.

1) reflection across the x-axis

$$
\begin{aligned}
& F(4,2), E(4,3), D(5,2) \\
& \quad E^{\prime}(4,-3), D^{\prime}(5,-2), F^{\prime}(4,-2)
\end{aligned}
$$

2) reflection across the y-axis $Q(-3,2), R(-3,4), S(-1,5)$ $R^{\prime}(3,4), S^{\prime}(1,5), Q^{\prime}(3,2)$
3) Triangle RST is reflected over the x-axis. The vertices are: $R(4,2), S(2,3)$ and $T(0,0)$. Which set of ordered pairs represents the vertices of $R^{\prime} S^{\prime} T^{\prime}$?
A. $\mathbf{R}^{\prime \prime}(-4,2) \mathbf{S}^{\prime}(-2,3), S^{\prime}(0,0)$
B. $R^{\prime}(4,-2) S^{\prime}(-2,3), S^{\prime}(0,0)$
C. $R^{\prime}(4,-2) S^{\prime}(2,-3) S^{\prime}(0,0)$

Write a rule to describe each transformation.
4) $D(-4,1), C(-5,4), B(-3,5), A(-2,0)$
5) $\mathcal{X}(-5,-4), I(-5,-1), H(-4,0), G(-1,-4)$
to
$C^{\prime}(-5,-4), B^{\prime}(-3,-5), A^{\prime}(-2,0), D^{\prime}(-4,-1)$ reflection across the x -axis
to
$I^{\prime}(5,-1), H^{\prime}(4,0), G^{\prime}(1,-4), J^{\prime}(5,-4)$
reflection across the y-axis

Activity:

For additional practice, click on the link below.
Click Join, then click continue without signing in.

Desmos Card Sort - Reflections

Additional Resources:

Printable Graph Paper
Reflection Lesson and Practice
Reflect and Rotate Online Practice Game
Reflections Shown
Symmetry Artist - Online Reflection Activity
Identify Transformation Activity
Video Lesson - Transformations
Virtual Graph Paper

